Mark scheme - Transport in Animals

2 4	i	reference to SA:V ratio \checkmark SA:V jellyfish is 7:1 and sea bass is 1:3 \checkmark correct explanation with ref. to <u>diffusion distance</u> \checkmark	3 (AO3.2)	ALLOW SA:V ratio for surface area to volume ratio ALLOW fish / larger organism, for sea bass ALLOW Latin names ALLOW SA:V ratio is (much / 21 times) larger / higher, in jellyfish (than in sea bass) ORA ALLOW jellyfish is 7:1 and sea bass 0.3:1 e.g. more cells in sea bass so <u>distance</u> oxygen has to travel is too great for <u>diffusion</u> alone
	ii	single (circulatory system / circulation) √	1 (AO1.1)	IGNORE closed DO NOT ALLOW open
	ii i	blood, stays in / is enclosed by / is transported in, (named) vessels \checkmark	1 (AO1.1)	
	i V	any two from: sea bass single vs. mammal double \checkmark sea bass blood goes through heart once vs. mammal twice \checkmark sea bass 1 atrium and 1 ventricle vs. mammal 2 atria and 2 ventricles \checkmark	2 max (AO2.1)	ALLOW mammal has pulmonary and systemic circulations CREDIT sea bass 2 chambers vs. mammal 4 chambers OR sea bass heart no septum vs. mammal heart has a septum
		Total	7	

				give credit to examples used in the correct context
				ALLOW high rate of respiration
		high metabolic, demands / rate ✓ need, large oxygen / rapid oxygen, supply ✓	3 max	IGNORE not efficient
2		distance too far \checkmark		ALLOW SA:V / surface area relative to volume
5		(to) maintain, steep / AW,		ALLOW nutrients / hormones
		concentration / diffusion, gradient(s) ✔		ALLOW toxins
		surface area to volume ratio is (usually) low ✓ (named) metabolite(s) needed by <u>cells</u> / (named) waste(s) removed from <u>cells</u> ✓		Examiner's Comments The mark points in Q16(c) were accessible to candidates across the ability range and there were some extremely confident responses showing a good understanding of this topic. Many candidates linked mark points three and five describing how the small SA:V would mean that diffusion distances would be too great. Stronger candidates consolidated this by explaining that such animals also have high metabolic rates and/or high oxygen demands.
		Total	3	
2 6	i	repeat (readings) √ calculate mean √	2 max	
0		calculate mean √		

	identifying anomalies √ use statistical test to identify difference √		this could be mean distance/size of colourless area, or mean time if cube allowed to go completely colourless ALLOW calculate standard deviation Examiner's Comments The question asks how the student could ensure confidence in the results. Confidence is a qualitative judgement expressing the extent to which a conclusion is justified by the quality of the evidence. The majority of candidates gained one mark here for repeating the readings. Only the more able candidates gained a second mark. This second mark was usually credited for calculating a mean. Many candidates described how the student could improve the validity of the results.
			OCR support Identifiable issue or misconception
			ALLOW 1 mark for 600 : 1000 and 96 : 64 6 : 10 and 3 : 2 : 5 and 3 : 2 (as correct ratios but not expressed correctly)
ii	cube A = 0.6 (: 1) √ cube B = 1.5 (: 1) √	2 max	Allow these ratios if written anywhere in the answer space. DO NOT ALLOW if units given
			Examiner's Comments This question asked for the surface area to volume ratio of two cubes to be calculated. Less able candidates have always struggled with this concept and this still seems to be true. Surface area to volume ratios should always be

			calculated as a surface area to one unit of volume (0.6 :1 rather than 0.6). Less able candidates often calculated it the other way around – a volume for one unit of surface area. Exemplar 1 (i) In Fig. 212, Cube A is 10mm along each side and Cube B is 4mm along each side. Exemplar 1 (ii) In Fig. 212, Cube A is 10mm along each side and Cube B is 4mm along each side. Show your working. Give your answers to one decimal place. N Show your working. Give your your your your your your your your
ii	Iarge(r) organism has small(er) SA : Vol ratio √ (rate of) diffusion (too) slow / diffusion distance (too) long √ for (sufficient), delivery / uptake of, oxygen / nutrients OR for (sufficient) removal of (named) waste products √ for, (aerobic) respiration / metabolic demands √	2 max	ALLOW ORA for first three mark points Examiner's Comments Many candidates knew that large organisms have a small surface area to volume ratio. These candidates successfully linked the concept of a small surface area to volume ratio with the need for a circulatory system. More able candidates could explain the need in terms of a slower rate of diffusion which meant that insufficient oxygen reached the tissues for respiration or metabolism. Less able candidates often confused the concept of a surface area to volume ratio, with surface area. Exemplar 2 (W Explain why the surface area to voume ratio of an organism determines whether it needs according system. Small agencient or volume ratio of an organism determines whether it needs circulation or metabolism. Less able candidates often confused the concept of a surface area to volume ratio, with surface area. Exemplar 2 (W Explain why the surface area to voume ratio of an organism determines whether it needs according system.

					large surface area to volume ra rapid diffusion. But in a larger of small surface area to volume r not be supplied quickly enough	atio. This allows organism with a atio, the cells will h.
			Total	7		
2 7			В	1	Examiner's Comments This question required basic m as required in the specification correct answer. A significant p candidates were unable to per calculations correctly.	nathematical skills, n, to select the roportion of form the
			Total	1		
			Using a 'best-fit' approach based on the science content of the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme. Once the level is located, award the higher or lower mark.		Indicative scientific points m As this is a comparison BOTH mammals must be mentioned Similarities Both are closed syster blood vessels Both have a heart Both carry oxygen usi Both have arteries / v Differences:	nay include / fish and ems / blood in ing haemoglobin reins / capillaries
2 8			The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.	6 (AO2.1)	Fish Mamma Single circulation / blood Double blood tl twice P system One atrium and 1	al e circulation / hrough heart Pulmonary and iic circulations ria and 2
		The lower mark should be awarded where the level descriptor has been evidenced bu aspects of the communication statement (in italics) are missing. In summary:	awarded where the level descriptor has been evidenced but aspects of the communication		ventricle / 2 chambers ventricl (in heart) / no septum in heart septum	les / 4 chambers rt) / heart has a n
			statement (in italics) are missing. In summary:		Blood passes through 2 Blood p sets of capillaries (before set of c returning to heart) returning	basses through 1 capillaries (before ng to heart)
			• The science content determines the level.		Blood pressure is lowerBlood r(to organs)higher	maintained at pressure

 1		
The communication		2 circulations with
statement determines		different pressures / can
the mark within a level.		have high pressure in
		systemic circulation
Level 3 (5–6 marks)		
Full and detailed comparison of	Less efficient at	More efficient at
the circulatory systems of a fish	transporting / supplying	transporting / supplying
and mammal.	oxygen to tissues	oxygen to tissues
		(Fulfils needs) as
	(Fulfils needs) as fish	mammals need to
comparison including a range of	are 'cold blooded' / have	maintain a constant body
reatures. The information	a low oxygen demand /	temperature / have a
oveloped	low metabolic rate	high oxygen demand /
		high metabolic rate
Level 2 (3–4 marks)		
Detailed comparison of the		
circulatory systems of a fish and		
mammal.		
	Examiner's Comment	<u>s</u>
There is a reasonable attempt at		_
comparison including a small	This Level of Response	e question assessed AO1
range of features. The information	in the context of compa	ring circulatory systems
presented is mostly relevant and	in mammals and fish. T	here were some
clearly explained.	excellent concise respo	onses as shown by the
	Level 3 exemplar where	e candidates expressed
Level 1 (1–2 marks)	their knowledge of clos	ed circulations either
Some correct comparison of the	double as in the mamm	nal or single as in the fish.
circulatory systems of a fish and	Level 3 responses inclu	uded other similarities
mammal.	and differences, such a	as differences in heart
	structure or metabolic r	ate, to provide a well-
The information is basic and	balanced comparison.	It was a common error for
communicated in an unstructured	candidates to confuse t	the circulation of a fish
way. I ne information is supported	with that of an insect de	escribing an open
by inflited explanations which may	circulation. Reponses t	hat included lengthy
pe unclear.	detail about gaseous e	xchange systems rather
0 morke	than circulatory system	s were credited with the
	lower communications	mark within a level.
worthy of credit	Evenneler 0	
	Exemplar 2	

					(a) Conjugate and contrast the drouted by systems of marmatis and fait. E Both mammalls and fash have closed circulatory systems of marmatis and fait. have a single doted circulatory system and mammals have adouble closed. By having a closed circulatory system the blood of marmats and fish are contained withinvessels. By having a single closed circulatory system the blood needs totravel through two to sets of applicates in fish but have double closed system in needs totravel through two to sets of applicates in fish but have double closed system in needs totravel through two to sets of applicates in fish but have double closed system in needs totravel through two to sets of applicates in fish but have double closed system in needs totravel through capillaries due for needs totravels through capillaries due for narrowing pessure drops. In mammals blood
					response for Science content. Many candidates
					space allocated with very few using the
					additional pages at the end of the question
					paper.
			Total	6	
					DO NOT CREDIT incorrect additional answers
2 9	а	i	<u>closed</u> ✓	1	Examiner's Comments
					Most candidates answered this correctly.
		ii	the fish has a single (circulation) and the mammal has a double (circulation) √	1	 ACCEPT descriptions of the circulations, but both must be described to be awarded the mark. e.g. deoxygenated and oxygenated blood passes separately through the mammalian heart but only deoxygenated blood through the fish heart in a circuit of the body the blood passes through the heart twice in mammals but once in fish ACCEPT single (fish circulatory system) versus a double (mammalian circulatory system) DO NOT CREDIT double versus single Examiner's Comments

			those candidates who chose to describe the circulations (rather than stating single for the fish and double for the mammal) frequently only described one. It was interesting to note that a significant number of candidates referred to 'pumps' rather than hearts, although some stated that the fish did not have a heart.
	 Level 3 (5–6 marks) Describes both frog and mammalian circulations Gives some detail on the relative effectiveness of the two systems. There is a well-developed line of reasoning which is clear and logically structured, relates to Figs 5.1 and 5.2 and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuousnarrative. Awarding at this Level = ^{L3} & 5 ticks of		 In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown in italics): award the higher mark where the Communication Statement has been met. award the lower mark where aspects of the Communication Statement have been missed.
b	Communication = ✓ or X	6	 The science content determines the level. The Communication Statement determines the mark within a level.
	 Level 2 (3–4 marks) Describes the mammalian or frog circulation. Attempts a description of the circulation of the other organism. Comments on the effectiveness of the two systems. 		Use the green dot in the margin to indicate places where good scientific points are made about the 2 circulations. Use a highlight square in the margin to indicate places where good scientific points are made about the relative effectiveness.
	There is a line of reasoning presented with some structure and use of appropriate scientific language. The information		 are not limited to: <i>circulations</i> 19 both are double circulations 20 blood from mammalian heart transported

presented is mostly relevant.	separately to lungs and body
	21 oxygenated and deoxygenated blood never
Awarding at this Level = $\begin{bmatrix} L2 \\ & 3 \end{bmatrix}$	mix
ticks $\sqrt{\sqrt{3}}$	22 blood from frog heart transported to lungs
Communication = $\sqrt{\mathbf{or}} \times$	and body together
	23 blood going to the body in the frog is
	partially oxygenated / mixed
	21 oxygenated blood only separate when
	ze oxygenated blood only separate when
	25 reference to the entrol velve partly
	25 reference to the spiral valve partity
	separating oxygenated and deoxygenated blood
Level 1 (1–2 marks)	26 flow of blood through the hearts described
	27 ref to differences between structure of frog
either	and mammalian hearts
Describes the	
mammalian or frog	effectiveness of circulation
circulation.	28 both can be considered to be effective
or	29 frog could be considered to be less effective
Comments on the	30 frog has less oxygen available for the body
effectiveness of the two	cells
circulatory systems.	31 circulation is effective enough for the frog's
	needs
	32 frog has lower metabolic rate
The information is communicated	33 frog maintains body temperature by other
with some structure but may	means
include a small amount of	34 frog heart may beat faster (to compensate)
irrelevant material and some	35 frog oxygenates blood at skin / mouth
inappropriate use of scientific	36 frog circulation may limit its size
language.	37 frog circulation developed from that of
	tadpole
Awarding at this Level = 4	38 mammalian body cells get maximum
tick 🗸	available O ₂
Communication = √ or X	39 mammal has higher metabolic rate
	40 mammal (uses metabolism to) maintain
	hody temperature
	body temperature
No response or no response	Examinar's Commonts
worthy of credit.	
	This was a Level of Response question which
	was challenging as it dealt with some unfamiliar
	material and produced a wide spread of marks
	The candidates often did well with part or full
	descriptions of the frog and mammalian
	circulatory systems but responses often lacked
	effective accounts of comparative efficiency
	The vast majority of candidates recognised that
	blood is 'mixed' in amphibians but not in
	mammale. There were some good descriptions
	of the mammalian airculation, which at times
	or the manimalian circulation, which at times
	also were on to describe amphibian circulation

			well. Some thought that the frog has an open circulatory system or sometimes a triple one. Many candidates attempted to explain why the mammalian circulation is effective in terms of the separation of oxygenated and deoxygenated blood and some linked this to the oxygen concentration gradient in respiring tissues. A few linked this to differences in the metabolic rates of the two organisms. A minority of candidates discussed the relative carbon dioxide concentration gradients in the lungs or respiring tissues. Some candidates wrote about pressure differences - blood can be under higher pressure in the mammalian systemic circulation so can travel faster around body. Some references to maintaining body temperature were seen, but candidates often used simple non-scientific terms such as cold blooded. Some gained full marks by discussing the relative effectiveness of mammalian and amphibian circulation.
	Total	8	
3 0	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown in italics):	6 (AO2.3 AO2.4 AO3.1)	For highest band need a correct reference to Fig. 2.3 and explanation of how the structure of each blood vessel is suited to its function for each of the three blood vessels (arteries , veins and capillaries). Indicative points can include: <u>Correct reference to data in Fig. 2.3</u> Artery has: smaller lumen, smaller diameter, less collagen, more elastic tissue and more muscle (than vein) ORA. Correct use of figures from Fig. 2.3 for comparisons. Capillary has: no muscle, no elastic tissue, no collagen tissue, is only one cell thick. The lumen diameter of 9.5 μm is slightly bigger than the red blood cell diameter of 8 μm. <u>Artery</u> Function: carry blood away from the heart under high pressure (so they have to withstand this pressure and force). Structure: (Thicker) elastic layer / elastin, enables them to withstand, pressure / force. (Thicker) elastic layer / elastin, enables them to, stretch recoil.

Statement have been missed. • The science content determines the level. • The Communication Statement determines the mark within a level.	Ref. elastic layer evens out surges from the pumping of the heart and allows a continuous flow of blood (Windkessel effect). Collagen provides, structure / support. Collagen maintains shape and volume (limiting stretch). Smooth muscle contracts and relaxes to, change the size of the lumen / control blood pressure. Smooth muscle provides strength to withstand
	the pressure
Level 3 (5–6 marks) There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Full and detailed description of how the structure of the blood vessel is suited to its function for all three types of blood vessels	<u>Veins</u> Function: Veins carry blood back to the heart. No, pulse / surge from heart. Blood in veins is under less pressure (than in arteries). Needs to move against gravity. Structure: Thinner elastic layer (no, stretch / recoil / pulse). Have valves to prevent backflow of blood. More collagen than arteries to give structural
(arteries, veins and capillaries)	support as they carry large volumes of blood.
and correct reference to the data	
in Fig. 2.3. Level 2 (3–4 marks) There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. A fairly good description of how the structure of the blood vessel is suited to its function for all three types of blood vessels, arteries, veins and capillaries, and correct reference to the data in Fig. 2.3	Capillaries Function: Allow substances, to be exchanged / diffuse, between blood and, tissue fluid / surrounding cells. Structure: Walls are one cell thick. Short diffusion distance. Only large enough to allow red blood cells to travel through in single file (to increase contact of RBCs with capillary wall). Small enough to form network needed to exchange substances.
Level 1 (1–2 marks) The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. Some description of how the structure of the blood vessel is suited to its function for all three types of blood vessels, arteries, veins and capillaries, and some	

reference to the data in Fig. 2.3.

			0 marks No response or no response worthy of credit.		
			Total	6	
3 1	а		tunica intima (1) OR endothelium (1)	1	ALLOW tunica interna
	Þ		0.15 ± 0.05 (1) (1) (1)	3	If incorrect answer given ALLOW 1 mark for calculating artery lumen ÷ vein lumen ALLOW 1 mark for correctly calculating artery or vein cross section Max 2 if answer is given to more than 4 significant figures
	с		 (in arteries) small lumen maintains pressure (1) (in veins) low resistance / friction needed because of, low pressure / slow flow (1) <i>further detail idea that</i> same flow rate is achieved by having a larger volume / cross sectional area (1) <i>idea that</i> large cross section compared to circumference means fewer particles colliding with wall / low friction / less resistance (1) 	3	ALLOW <i>idea that</i> small volume compared to wall surface means molecules in blood more likely to collide with wall
			Total	7	
3 2	а	i	(water potential) decreases / more negative \checkmark	1 (AO1.1)	
		ij	large plasma proteins cannot, pass out through capillary wall / leave the blood, but other solutes can √ imbalance of large plasma proteins between blood and tissue fluid results in oncotic pressure √	2 (AO2.1)	

b	i	Jv = (4.5 - 0.15) - 0.7 0.03) = 1.22 (kPa) √ out of capillary / outwa	5 (4.2 rd √	-	2 (AO2.2)	ALLOW 1.2 / 1.2225 / 1.223 ALLOW into <u>tissue fluid</u>
	ii	reduction in albumin ca reduces (capillary) ond pressure √ (so) increase the net d	oncen cotic riving	tration force	2 (AO2.2)	
	ii i	student is correct be net driving force, is hig increased √ (so) more tissue fluid for student is incorrect to kidney damage could I loss of water (in urine) no information about, for pressure / tissue oncold in patients √ single patient could res atypically √ (inflammation leading for in value of reflectance increase, albumin / pro- tissue fluid √	cause her / h ormec oecau ead to √ ead to √ nydros ic pre spond spond co) rec factor otein, i	nas I √ se o more static ssure, luction could n	max 4 (AO3.1)	ALLOW less, fluid / water, returned to blood ALLOW reduction in σ could increase oncotic pressure in tissue fluid
с		StatementLymph is similar in composition to tissue fluid but has more oxygen.Tissue fluid does not contain lymphocytes because they are too large to pass through capillary wall.	True	False ✓	2 (AO1.1)	IGNORE crosses

	Lymph contains more protein than tissue fluid because of antibody production by plasma cells. ✓ 3 correct √√ 2 correct √		
	Total	13	
3 3	Please refer to the marking instruction point 10 for guidance on how to mark this question. In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication Statement (shown in italics): • award the higher mark where the Communication Statement has been met. • award the lower mark where aspects of the Communication Statement have been missed. • The science content determines the level. • The science content determines the level. • The Communication Statement determines the mark within a level.		

Level 3 (5–6 marks)

A clear description how the nonspecific defences cause all or nearly all of the observed responses (making reference to clotting and scab formation, inflammation **and** swelling of lymph node). All observations are clearly explained in full and with a clear link between each observation and each explanation.

There is a logical thread linking each observation in the correct time line as the immune system comes into action. Specialist terms are used throughout.

Level 2 (3-4 marks)

A clear description of the nonspecific responses that cause some of the observed responses (making reference to clotting and scab formation, one to do with inflammation of the cut **and / or** swelling of lymph node). Some explanations are provided but these may not link clearly to the observation or may not be complete explanations.

6

The information is clear and concise using a number of scientific terms appropriately.

Level 1 (1-2 marks)

A limited description of the nonspecific responses covering at least one of the observations (to do with clotting and scab formation, inflammation of the cut or swelling of the lymph node). Explanations are given for the observation but the explanations are not clear and there is no clear link between the observation and the explanation.

There is a logical structure to the answer. The explanation, though

Indicative scientific points may include:

bleeding stops:

- exposure (of blood / platelets) to collagen in damaged, blood vessel / tissue causes clotting response
- many factors involved in clotting process
- soluble fibrinogen converted to insoluble fibres
- mesh of fibres traps cells and platelets
- clot prevents bleeding
- clot dries out to produce scab
- scab protects against entry of pathogens

swelling / redness / tenderness:

- infection by pathogen
- detection by mast cells
- release of, histamine / cell signals, cause response
- arterioles dilate allowing more blood to area causing redness
- more tissue fluid forms causing swelling (oedema)
- phagocytes attracted to area
- phagocytosis of pathogens

discomfort in armpits:

- excess tissue fluid drained to lymph vessels
- pathogens in tissue fluid enter lymph fluidz
- transported along lymph system to lymph nodes
- activity of phagocytes (and lymphocytes) causes, swelling of lymph nodes / discomfort in armpit

So marks No response or no response worthy of credit. Indicative scientific points may include Similarities: Image: The reliance between the processes Indicative scientific points may include Similarities: Image: The reliance between the processes Indicative scientific points may include Similarities: Image: The reliance between the processes Small molecules are filtered from/diffuse out of the blood. Image: The reliance between the processes Image: The reliance between the processes. Image: The reliance between the processes Image: The reliance between the processes There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Blood vessels become narrower to maintain (hydrostatic) pressure though in both Image: The information presented is mostly relevant. Filtrate enters the Bowman's capsule and then the PCT in the kidney, but tissue fluid bathes cells/enters intercellular space. Image: The information is communicated with only a little structure. Communication is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. Image: fluid with are not reabsorbed from tissue fluid Image: The information of tissue fluid the structure. Communication is hampered by the inappropriate use of technical terms. Image: fluid with are not reabsorbed from tissue fluid Image: The information of tissue fluid there capsorted through 3 (named) la		basic, is clear.		
Total 6 Level 3 (5-6 marks) Correctly describes similarities and differences between the processes Indicative scientific points may include Similarities: There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous nerrative. Small molecules are filtered from diffuse out of the blood. Level 2 (3-4 marks) Correctly describes a similarity and a difference between the processes Many molecules (e.g. water, sugars, ions) are reabsorbed back into capillaries. There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. 6 Level 1 (1-2 marks) Correctly describes a similarities or differences between the processes 6 Level 1 (1-2 marks) Correctly describes similarities or differences between the processes 6 Level 1 (1-2 marks) Correctly describes similarities or differences between the processes 6 Level 1 (1-2 marks) Correctly describes similarities or differences between the processes 6 The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. 6 Blood filtered through 3(named) layers in utrafiltration, but only 1 (named) tayer in formation of tissue fluid Notecoles that are not reabsorbed for tissue fluid will, enter cells / form tymph. Blood filtered through 3(named) layers in utrafiltration, but only 1 (named) tayer in formation of tissue fl		0 marks No response or no response worthy of credit.		
 Indicative scientific points may include Similarities: Correctly describes similarities and differences between the processes There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative. Level 2 (3-4 marks) Correctly describes a similarity and a difference between the processes There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1-2 marks) Correctly describes a similarities or differences between the processes There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1-2 marks) Correctly describes a similarities or differences between the processes The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. Blood filtered through 3 (named) layers in ultrafiltration, but only 1 (named) layer in formation of tissue fluid Knot of capillaries in formation of tissue fluid 		Total	6	
worthy of credit.	3 4	Level 3 (5-6 marks) Correctly describes similarities and differences between the processes There is a well-developed line of reasoning, which is clear and logically-structured and uses scientific terminology at an appropriate level. All the information presented is relevant and forms a continuous narrative. Level 2 (3-4 marks) Correctly describes a similarity and a difference between the processes There is a line of reasoning presented with some structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1-2 marks) Correctly describes similarities or differences between the processes The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms. O marks No response or no response worthy of credit.	6	 Indicative scientific points may include Similarities: Small molecules are filtered from/diffuse out of the blood. Both processes occur in capillaries. Large molecules/proteins/ cells, remain in the blood. High (hydrostatic) pressure in both processes. Many molecules (e.g. water, sugars, ions) are reabsorbed back into capillaries. Blood vessels become narrower to maintain (hydrostatic) pressure Hydrostatic pressure greater than oncotic pressure in both Neutrophils / lymphocytes, can pass through in both Both involve basement membranes Differences: Filtrate enters the Bowman's capsule and then the PCT in the kidney, but tissue fluid bathes cells/enters intercellular space. Molecules that are not reabsorbed by capillaries form urine in the kidney, but molecules that are not reabsorbed from tissue fluid will, enter cells / form lymph. Blood filtered through 3(named) layers in ultrafiltration, but only 1 (named) layer in formation of tissue fluid knot of capillaries in ultrafiltration but a network of capillaries in formation of tissue fluid

	This was the more difficult of the Level of Response questions, but examiners saw the full range of marks credited. Those candidates who took the lead from the question and organised their answer into similarities and then differences gave significantly more coherent responses and were credited communication marks. Those who jumped around in their thinking, which was reflected in the poor organisation of the answers, lost the communication mark. Similarly, some listed features of the 2 systems independently and made little attempt to compare them and the communication mark was deducted. Similarities were more common – most candidates identified high hydrostatic pressure, small molecules to leave and large molecules (e.g. proteins) held back as similarities. Hence the majority of candidates succeeded in reaching at least L1 with 2 similarities.
	Correct differences were less common. The most common differences mentioned were the differences in number of filtering layers, and the location of the 2 processes. Common misconceptions seen involved misunderstanding the role of oncotic pressure in both and lack of awareness that ultrafiltration occurred at the Bowman's capsule and nowhere else in the kidney tubule. Weaker candidates confused ultrafiltration with selective reabsorption, and/or the formation of tissue fluid with its reabsorption and therefore wrote irrelevant answers. A tip for candidates would be to use sub headings to ensure they are covering both areas of the question.

		The process of ultrafiltration in the kidney shares similarities with the formation of tissue fluid. AN Departure the similarities and differences between the formation of tissue fluid.
		(a) Describe the similarities and differences between ultrafiltration and the formation of tissue fluid.
		te push out the Contest of the Copland by was for
		However in ultrajettration opens pressure is light by
		a socialized appertant contains than applicant. Deron Confulson wells contain on pro in prosent interesting
		allow only small redenty chrough like glucose, ins
		ultrafitestion has a herrorest werder one and polarises
		which news relate kigger sten a melecular mes of 69 das
		protons con poss through a time fluid but act inte
		the repros The lakings of the leftlagest logillory at sits of tissue find formation an he attend
		by the production of historica whereas the 103 yomendus does not. The process of ultrafiltration
		only news at the glorendes, but liste fluid is
		Tursue glaind is drained into the lymphite system
		12 but the report lads to the water due to the
		pressure working against hydrostotic pressure
		Called encosté pressure wheres, ultrapiltrator does pot;
		This candidate achieved a Level 3 for this
		response. It fulfilled the need for several
		similarities (both processes involve hydrostatic
		pressure and filtering of small molecules
		through capillary walls) and several differences
		(location of the processes, and what happens to
		the molecules following the two processes).
		Generally, the response is well organised,
		despite the incorrect statements about oncotic
		pressure and histamine.
		Exemplar 4

				⁶ The process of <u>ultralitation</u> in the kidney shares similarities with the formation of tissue fluid. (a) Describe the similarities and differences between ultralitation and the formation of tissue fluid. (b) Process the similarities and differences between ultralitation and the formation of tissue fluid. (b) Process the similarities and differences between ultralitation and the formation of tissue fluid. (b) Process the similarities and differences between ultralitation and the formation of tissue fluid. (c) Process the similarities and differences. The actual through that a citizen the similarities that the blood process. (c) Process the ultrality of the similarity of the similarity. (c) Process the similarities and difference is surroundably. (c) Process the ultrality of the similarity of the similarity. (c) Process the similarities and difference is the blood interval. (c) Process the surroundably. (c) Process
		Total	6	Additional incorrect answer in a cell = 0
				marks
				Symbols must be fully correct
3		Important role Ion Production of nitrate ions by bacteria NH4 ⁺		all three correct = 2 marks
5	i	Loading of phloem H ⁺	2	one or two correct = 1 mark
		DNA structure PO4 ³ Cofactor for amylase CI ⁻		none correct = 0 marks
				Examiner's Comments
		√ √		Most candidates could identify one or two ions
				was chloride ion as a cofactor for amylase.
				Statements must:
	11		2	name the end of the capillary

		at arterial end AND hydrostatic / 4.6, is greater than, oncotic / −3 AND (fluid / plasma) moves, out / from, (capillary) √ at venous end AND hydrostatic / 2.3, is lower than, oncotic / −3 AND (tissue fluid) moves into (capillary) √		 make a comparative statement about the two pressures in the capillary (using name or number) state the direction of movement of fluid. ALLOW bigger / higher / more, for 'greater' ALLOW ORA oncotic / -3, less than hydrostatic / 4.6 ALLOW ORA fluid moves into tissues IGNORE osmosis ALLOW Smaller / less, for 'lower' ALLOW ORA oncotic / -3, more than hydrostatic / 2.3 ALLOW ORA fluid moves, out of / from, tissues IGNORE osmosis Examiner's Comments This question targeted a quantitative understanding of a theoretical process. Candidates needed to present an analysis of the figures in the question to explain why fluid moves out of the capillary at the arterial end and back in at the venous end. Memorised answers that not fully explain the net effect of the two opposing pressures did not score. Lower scoring answers ignored oncotic pressure and just discussed the difference between bydractic process.
		Total	4	
3 6		С	1	Examiner's Comments This question required candidates to draw on their knowledge of the various parts of the circulatory system in a way in which they may not have done previously. The most common error was to think that the blood in the vena cava was under high pressure.
		Total	1	
3 7	i	any two from: aorta √ pulmonary (artery) √ coronary (artery / arteries) √	2 max (AO1.1)	

PhysicsA	AndM	aths7	Tutor.	сот	

		ii	septum √	1 (AO1.1)	
		ii	any three from: left ventricle wall should be thicker than right (not same) \checkmark label 'right ventricle' should be (left / right) atrium \checkmark label 'tricuspid valve' should be semi-lunar valve \checkmark idea that drawing is wrong way round so left ventricle should be on the right side of the page \checkmark	3 max (AO3.4)	IGNORE drawing quality errors IGNORE structures omitted from drawing ALLOW RV should be at correct label location described ALLOW tricuspid valve should be at correct label location described DO NOT ALLOW left and right ventricles should be switched ALLOW LV should be labelled RV
			Total	6	
3 8		i	A = sinoatrial node / SA node / SAN \checkmark B = <u>right</u> , atrium / atria \checkmark C = (inferior) vena cava \checkmark D = semilunar valve \checkmark E = bicuspid / (left) atrioventricular / (left) AV, valve \checkmark	5 (AO1.1)	DO NOT ALLOW sinoarterial ALLOW aortic valve ALLOW mitral valve DO NOT ALLOW tricuspid
		ii	autonomic √	1 (AO1.1)	ALLOW parasympathetic / sympathetic
			Total	6	
3 9	а		Sourc e of bloodValve that controls blood flowDestinatio n of bloodright ventri cleright semilunar valvepulmonary artery/arte riesleft atrioventric ular / bicuspid / mitral (valve)left ventricle	2 (AO2.1)	IGNORE 'lungs' ALLOW left atrial ventricular (valve)
	b		blood, leaks / AW, from left to right ventricle (during ventricular systole) √ (more) oxygenated blood delivered to lungs √	4 max (AO2.1)	ALLOW 'oxygenated and deoxygenated blood mix' IGNORE 'blood between the two ventricles is not separated'

		deoxygenated blood pa left ventricle (during atr ✓ less oxygenated blood around the body / to tis cells ✓ less oxygen available for respiration / ATP produ	asses into ial systole) pumped, sues / to or (aerobic) ction √		ALLOW 'less oxygen transported to, the body / tissues / cells' ALLOW 'less aerobic respiration takes place'
		Total		6	
4 0	i	assume answer refers to heart 2 unless stated otherwise: can see / it has, aorta / (pulmonary) artery / (pulmonary) vein / vena cava / <u>blood</u> vessel(s) √		1	DO NOT ALLOW coronary artery ALLOW ORA that aorta / (pulmonary) artery / (pulmonary) vein / vena cava / <u>blood</u> vessel(s), not present on heart 1 Examiner's Comments Most candidates referred to the visible blood vessels or a named vessel on heart 2.
	ii	Z = <u>left ventricle</u> √		1	IGNORE cardiac muscle Examiner's Comments Most candidates identified the left ventricle. Some wrote cardiac muscle which is a tissue rather than a structure.
		Total		2	
4 1	i	(branches of) coronary	artery (1)	1	
	ii	(cardiac / heart) muscle	e (1)	1	
	ï	Feature AV valve bundle of His left ventricular wall Pulmonary vein Purkyne fibres SA node semi-lunar valve septum	Visible ✓ X ✓ X X X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	3	4 correct ticks = 3 marks 3 correct ticks (and no more than 1 incorrect) = 2 marks 2 correct ticks (and no more than 2 incorrect) = 1 mark
		Total		5	

4 2	i	 similar increase and decrease (in pressure), between 0 to 0.15s / to 0.15s / to point X √ steeper / faster, rise / fall, in ventricle (pressure) √ bigger , increase / decrease, in ventricle (pressure) √ <i>idea that</i> at approximately 0.15s atrial (pressure) has, (small) rise and fall / AW, but ventricular is increasing √ <i>idea that</i> from approximately 0.3s ventricular pressure decreases but atrial pressure still increasing √ 	4 max(AO1.2) (AO2.5)	ALLOW cha between 0 to ALLOW OR ALLOW OR NOTE: MPs comparative Time (s) 0 0.08 0.15 0.30 0.50 For MP7 unit Figures must ALLOW +/- 0 e.g. at 0.15s 0.2 kPa to 10 0.8 and back e.g. ventricul	nges in pressur 0.15s / to poin A for atrium 2 and/or 3 may figures LA (kPa) 0.2 1.5 0.2 0.8 0.2 ts must be ment t show change 0.5 throughout f ventricle pressi SkPa but atrial h t down = MP4 a far pressure has the point of the pression t a down = MP4 a	re are the same, t X / to 0.15s r be implied using LV (kPa) 0.2 1.0 0.2 16.0 0.2 16.0 0.2 tioned once in pressure in kPa for pressure ure goes from has 'blip' from 0.2 to and MP7 s big increase from
		between 0 to 0.15s / to 0.15s / to point X √		0.30	0.8	16.0
		 steeper / faster, rise / fall, in ventricle (pressure) √ 		0.50	0.2	0.2
42	i	 decrease, in ventricle (pressure) √ <i>idea that</i> at approximately 0.15s atrial (pressure) has, (small) rise and fall / AW, but ventricular is increasing √ <i>idea that</i> from approximately 0.3s ventricular pressure decreases but atrial pressure still increasing √ from 0.5s no change in pressure(s) in both √ comparative figures with units √ 	4 max(AO1.2) (AO2.5)	For MP7 unit Figures must ALLOW +/- 0 e.g. at 0.15s 0.2 kPa to 10 0.8 and back e.g. ventricul 0.2kPa to 16 MP3 and MF Examiner's Good resport compare the two heart chat being greate atrium was re those who gat changes ofter responses all comparing in at the differe candidates g what was hat detail of blood action Desp	ts must be men t show change 0.5 throughout f ventricle pressi 6kPa but atrial h down = MP4 a dar pressure has kPa but atrial o 7 Comments uses demonstra changes in pre ambers. The ind r in the (left) vel ecognised by m ave figures for t en gained two m so used approxi- ten gained two m so used approx- icreases and de int stages show ave description ppening during d flow through fit	tioned once in pressure in kPa for pressure ure goes from has 'blip' from 0.2 to and MP7 is big increase from nly goes to 0.8kPa = ted the ability to issure between the crease in pressure ntricle than in the isany candidates, and he pressure harks. Good kimate times when ecreases of pressure n in Fig.16.Many is or explanations of the cardiac cycle, the heart and valve

				did not address what was being asked by the question and could not be credited.
				Candidates are reminded to use units e.g. (kPa) and (s) in this case, when using figures to
				support their responses.
				Exemplar 1
				16 (a) Fig. 16 shows pressure changes during the cardiac cycle.
				Fig. 18 (1) Using Fig. 16, compare the changes in pressure in the left ventricle with the changes in pressure in the left attime. In the first DOI 15, seconds. J. Dre left. reacticide 4. left. a trium fightane to Starting and the changes in pressure. Drives the first distance of the second se
				This response identifies a high attaining response where the candidate has clearly compared pressure changes and included the use of figures and units from Fig.16.
				Unit must be given ALLOW beats per minute
				Examiner's Comments
	ii	86 bpm √	1(AO1.2)	The majority of candidates demonstrated that they could use Fig.16 to extract the information and perform a heart rate calculation. Some candidates were not credited for this single mark question because they did not give their answer to two significant figures or did not include units e.g. beats min ⁻¹
				OCR support
				The 'Maths for Biology' website provides
1				support on the correct use of significant figures:

				https:/www.ocr.org.uk/subjects/biology/maths- for-biology/handling-data/
	ii i	45 (%) √√	2(AO1.2)	IGNORE + or – ALLOW for 1 max 44 or 46 If answer incorrect or not given to 2 sig.figs: ALLOW for 1 max 5 ÷11 x 100 OR 45.45 OR 45.5 Examiner's Comments The mathematical skill of calculating percentage change is still proving challenging for many candidates. As in Q16(a)(ii) some candidates did not give their answer to two significant figures which was a requirement of the question to achieve both marks. The 'Maths for Biology' website provides support on how to calculate percentage change: https://www.ocr.org.uk/subjects/biology/maths- for-biology/handling-data/ The mathematical Skills Handbook can also be used to assist candidates with the maths skill
				'M0.3': https:/www.ocr.org.uk/Images/294471-biology- mathematical-skills-handbook.pdf
	i	atrioventricular √	1(AO1.2)	ALLOW bicuspid / mitral IGNORE AV DO NOT ALLOW tricuspid Examiner's Comments
	V		10.001.27	Many candidates gave atrioventricular (valve) as the correct response with a few also gaining credit for bicuspid (valve).
		Total	8	
4 3		For answers marked by levels of response: Read through the whole answer from start to finish, concentrating	6 max	Indicative scientific points may include the following: (answers may start at any point in the cycle. IGNORE box A description)

on features that make it a stronger or weaker answer using the	В
indicative scientific content as	
guidance. The indicative scientific	atrial diastole
content indicates the expected	ventricular diastole
parameters for candidates'	atria relax
answers, but be prepared to	ventricies relax
approaches where they show	 bicuspid / tricuspid, valve(s) OR ref. to their opening (more)
	 blood enters atria (passively)
Using a 'best-fit' approach based	 blood enters ventricles (passively)
on the science content of the	с
level descriptors evel 1 evel 2	
or Level 3. best describes the	atrial systole atria contract
overall quality of the answer using	atria contract pressure (on blood) in strip increases
the guidelines described in the	 pressure (on blood) in atria increases blood flows through atriavantriavlar (A)(/
level descriptors in the mark	 bicuspid / tricuspid, valve(s) OR ref. to their being open
	 ventricles fill / more blood enters ventricles
Once the level is located, award	 volume (of ventricles) increases
the higher or lower mark.	 pressure (of blood against ventricles) increases
The higher mark should be awarded where the level	pressure in arteries is, low / at a minimum
descriptor has been evidenced and all aspects of the	D
communication statement (in italics) have been met.	ventricular systoleventricles contact
The lower mark should be	volume (of ventricles) decreases
awarded where the level	pressure (on blood in ventricles) increases
descriptor has been evidenced but	atrioventricular / bicuspid / tricuspid, valves
aspects of the communication	semi-lunar valves open
statement (in italics) are missing.	blood flows into aorta
	blood flows into pulmonary arteries
In summary:	
The science content determines the level.	Examiner's Comments
The communication statement determines the mark within a level.	In order to be successful on this level of response question, candidates had to apply their recalled knowledge of the cardiac cycle to
Level 3 (5–6 marks)	the sequence of stages shown on Fig. 2.3. Most
A detailed description of the	candidates tried to do this and made clear
cardiac cycle with references to B,	references, as instructed, to stages B, C and D.
C, and D in Fig. 2.3.	A correct and clearly communicated account with a reasonable level of detail scored 6 marks.
There is a well-developed line of	but the next commonest mark was a level 2

	(1) peak between 2 and 15 kPa (1)		
	For answers marked by levels of response:		
	Read through the whole answer from start to finish, concentrating on features that make it a stronger or weaker answer using the indicative scientific content as guidance. The indicative scientific content indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance.		
ii	Using a 'best-fit' approach based on the science content of the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme.	•	
	Once the level is located, award the higher or lower mark.		
	The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.		
	The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.		
	In summary:		
	• The science content determines the level.		

 Ventricles are relaxing between W and Y atria relaxed at W, X, Y and Z atria relaxed at W, A, Y and Z atria relaxed at W, A, Y and Z atria relaxed at W, A, Y and Z At W rentrolar pressure falls below atria pressure falls below atrial pressure At Y ventrolar pressure rises above atrial pressure At Z ventricular pressure rises above artrial pressure rises ab
--

					ALLOW tachyarrhythmia
					ALLOW spelling variants: tachycardic / tacchycardia / tackycardia (to sound same, not 'tr' at start)
4					DO NOT ALLOW trachecardia / tracardia / tracycardia / tracchycardia / trachycardia
6		i	(supraventricular) <u>tachy</u> cardia √	1	Examiner's Comments
					Of those who attempted to name the abnormally fast heart rhythm, around half got the correct answer. Most of the rest provided a spelling that was unacceptably far from the correct one, tachycardia, though a few opted for other heart abnormalities like atrial fibrillation or bradycardia.
					Correct answer in standard form gets 2 marks automatically if working not shown for mp 1.
					ALLOW calculated figure within this range ALLOW up to 3 extra decimal places within this range
		ï	calculated cardiac output (in cm ³): figure in range from 5333 to 5520 \checkmark presentation in standard form: figure in range from 5.3(33) x 10 ³ to 5.5(20) x 10 ³ \checkmark	3	DO NOT ALLOW rounding error when reducing no. of s.f. ALLOW up to 3 extra significant figures e.g. 5.48571 × 10 ³ ALLOW ECF for any calculated figure outside the allowed range presented in standard form: e.g. 4800 shown as 4.8 × 10 ³ gets mp2 ALLOW ECF if >3 extra d.p. already penalised for mp 1
					ALLOW conversion from cm ³ to dm ³ so for example: 5.333 / 5.434 / 5.463 / 5.485, × 10 ⁰ dm ³ minute ⁻¹ and 5.3 / 5.4 / 5.5, × 10 ⁰ dm ³ min ⁻¹ gets 3 marks
					DO NOT ALLOW beats or letter 'b' in unit
			<i>units:</i> <u>cm³ min⁻¹ OR cm³ / min(ute)</u> OR		Examiner's Comments
			<u>cm</u> ³ per <u>min</u> (ute) √		This was another problem requiring several steps of mathematical processing to solve. Just under half of candidates gained one or more marks. A stepwise approach to dealing with this question is detailed in the AfL box, and some

					arithmetic-and-numerical-computation/ (using standard form)
		ii	 impulse OR (wave of) depolarisation OR wave of excitation √ correct ref. atrioventricular node / AV node / AVN √ (through / along) bundle of His / Purkyne fibres, to (cause contraction of) ventricles √ 	2 max	IGNORE signals / messages / electrical waves IGNORE SAN Examiner's Comments This was well answered with most candidates mentioning the atrioventricular node (AVN) and referring correctly to a wave of excitation of electrical impulses (rather than signals or messages).
			Total	6	
47			three from no distinct, P curve / atrial depolarisation (1) irregular / weak, atrial contraction (1) insufficient blood forced into ventricles (1) although ventricles contract there is less blood forced from the heart (1)	3	
			Total	3	
4 8			(ventricular) tachycardia (1)	1	
			Total	1	
4 9	а	i		4	IGNORE references to T waves
		i	(<i>in X</i>) <i>idea of</i> no defined P phase (1) atrial fibrillation (1) <i>idea of</i> rapid or frequent electrical impulses in atria (1) <i>idea of</i> electrical impulses not only from SAN (1) <i>idea of</i> smaller gaps between QRS phases (1) ORA <i>idea of</i> heart rate set by SAN is faster (1) ORA		ALLOW Y has a defined P phase ALLOW Y does not show atrial fibrillation ALLOW <i>idea of</i> regular bursts of electrical impulses through atria in Y ALLOW electrical impulses only from SAN in Y

		ï	4570 (1)(1) cm³ min ⁻¹ (1)	3	Apply ECF ALLOW 4571 to 4572 ALLOW 1 mark for heart rate of 57.14 (allow 57.0 to 57.2) bpm (4 full cycles in 4.2 seconds) if no other mark awarded
	b		three cardiac cycles drawn (1) second cardiac cycle closer to the first cycle than the third cycle (1) abnormal QRS in second cycle (e.g. extended peak or lack of T phase) (1)	2	e.g. 2 marks for
			Total	9	
5 0		i	normal rate 78.9 bpm (1) rate for tachycardia 125 bpm (1) percentage increase 58 (%) (1)(1)	4	ALLOW 1.3 bps. ALLOW 2.1 bps. ALLOW 2 marks for percentage increase correctly calculated using candidate's figures for rates and answer given to nearest whole number. ALLOW 1 mark for correct working [(125 – 78.9) ÷ 78.9 × 100 or correct use of candidate's figures for rates] or a correctly calculated but unrounded answer DO NOT ALLOW answers that divide by the rate for tachycardia as a percentage increase is asked for.
		ii	<i>two from</i> lower (Q)R(S) peak (1) P and T equal in height (1) width of T wave greater (1)	2	
			Total	6	
5 1		i	Z THEN X √ Y √	2(AO1.2)(AO 2.8)	Order MUST be Z, X then Y for two marks Examiner's Comments Many candidates ordered the heart rate patterns

			correctly. Some candidates were able to score one mark by having Y in the right place, even though X and Z had been reversed.
ii	large single peaks present √ small wavy line between peaks with at least three waves between any two peaks √	2(AO2.6)	0 marks if just a wavy line drawn with no peaks Examiner's Comments There was a great deal of variation in the traces drawn by candidates. The majority of candidates achieved one mark for drawing taller peaks, but many struggled to produce a reasonable sketch of the trace between the peaks. Some candidates often drew traces in regular rhythm from the previous question and others drew incomplete traces i.e. only showing 1 beat and not using the entirety of the space provided. Exemplar 5 This exemplar shows a good response to this part of the question. The candidate has clearly sketched a trace typical of atrial fibrillation.
II i	increased stroke volume / AW √ increased volume of ventricle (chamber) √ increased , thickness / strength , of heart <u>muscle</u> √	2(AO2.7)	ALLOW myocardium for muscle Examiner's Comments Good responses for this part of the question understood that there would be an increased thickness of cardiac muscle and that stroke volume would increase. Few candidates mentioned the increase in ventricular volume. Misconception There appeared to be a misconception amongst many candidates that aerobically fit people would not need as much oxygen delivered to

					cells, had more red blood cells or needed less ATP.
			Total	6	
5 2		i	-14 ± 1 % (1) (1) (1)	3	ALLOW 3 marks for correct answer Max 2 if no negative sign If answer is incorrect award 1 mark for 64.5 ± 1 (bpm)
		ii	only one (full) cardiac cycle / heartbeat, shown (1) could be anomalous / atypical (1) <i>idea that</i> measurement of cycle from different points gives different values (1) mean (of several cycles) would be better (1)	3	
		ii i	longer T-wave or broader R wave (1)	1	
			Total	7	
			temperature √		
5 3		i	enzyme concentration √	2 max	
			substrate / carbon dioxide, concentration √		
		ii	idea of H ⁺ reacts with haemoglobin to form haemoglobinic acid, which lowers pH (back to 7.4) \checkmark idea of H ⁺ reacts with HCO ₃ ⁻ to form H ₂ CO ₃ , which lowers pH (back to 7.4) \checkmark <i>idea of</i> H ₂ CO ₃ dissociates to form H ⁺ and HCO ₃ ⁻ , which raises pH (back to 7.4) \checkmark	3	
			Total	5	
5	а		Level 3 (5–6 marks) Describes differences and similarities of llama and camel haemoglobin at all four levels of protein structure with correct	6	 Indicative scientific points include: difference in primary structure different amino acid / polypeptide sequence

			reference to bonding.		• one amino acid changed.
			There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Describes differences and similarities of llama and camel haemoglobin in some levels of protein structure with some reference to bonding.		 amino acid change could cause change to secondary structure initial coiling or folding of polypeptide chain α-helix β-pleated sheet hydrogen bonding.
			There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Describes a difference or similarity of llama and camel haemoglobin at a level of protein structure. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.		 amino acid change could cause change to tertiary structure further coiling of secondary structure ionic bonding disulphide bonds hydrophilic / hydrophobic bonds 3D shape. amino acid change has not changed quaternary structure alpha and beta subunits still able to form haemoglobin in both camel and llama.
			0 marks No response or no response worthy of credit.		
	b	i	2.8 (kPa)	1	ALLOW answer in the range of 2.8–3.0 kPa
		ii	(llama) haemoglobin needs higher affinity for oxygen (1) (so) can pick up oxygen at lower partial pressure (of oxygen) (1)	2	
			Total	9	
5 5	а		6 600 √√	2	Correct answer = 2 marks If answer is incorrect, ALLOW 1 mark for seeing 20.1 - 0.3 = 19.8 or

				(20.1 0.2) : x
				$(20.1 - 0.3) \div x$
				10 8 ÷ v
				where $x = any$ number
				Examiner's Comments
				This was a challenging question with no more than a third of candidates knowing how to carry out the percentage change calculation correctly. A large proportion of candidates failed to work out the difference as the first step (so missed the calculation mark) and if they did calculate it, candidates then offered this as the % difference, without the division and ×100 part of the calculation. This mathematical skill should be specifically practised.
				Correct answer = 2 marks
				If answer is incorrect then ALLOW 1 mark for any ref to 201 × 5 (e.g. 2.01 × 5 or 2.01 × 50 or 0.201 × 0.5 etc)
b	i	1005 🗸 🗸	2	Examiner's Comments
				Many candidates understood the need to multiply 5×20.1 and gained one working mark for this or a variation of it, but many were clearly struggling with the conversion into different units of different magnitude and the correct answer was only gained by a few.
		1 arteries / arterioles, have thick wall		1 ACCEPT artery walls have, elastic fibres / muscle / collagen / (more) layers
				IGNORE ref to veins / venules
		or capillary wall is, thin / one cell thick / only endothelium ✓		DO NOT CREDIT ref to cell wall
	ii		2	
		2 no diffusion (through artery wall) or diffusion distance (too) large for artery		
		or		
		diffusion occurs (through capillary wall)		Note: 'artery walls too thick for diffusion to take place' = 2 marks

		or short diffusion distance for capillary √		Examiner's Comments Many candidates made reference to elastic tissue and muscle tissue in arteries and arterioles but did not gain credit because they failed to specify the wall. Some candidates just referred to 'blood vessels' as stated in the question, without naming them. A significant number referred to cell walls of the different vessels. The majority of candidates referred to capillaries as being one cell thick, with no reference to their walls. Most candidates gained credit for diffusion in connection with capillaries.
с	i	Bohr (effect / shift) √	1	Correct spelling only ACCEPT bohr / Bohr's / bohr's Examiner's Comments The vast majority of candidates answered (and spelled) Bohr effect/shift correctly.
	11	<i>in actively respiring tissues</i> 1 more / high levels of, carbon dioxide (produced) or high pCO ₂ √ 2 lowered affinity of haemoglobin for oxygen√	max 2	 If symbols used must be correct e.g. CO₂ not CO² 1 ACCEPT ORA for resting tissue 2 ACCEPT 'Hb' for haemoglobin ACCEPT weaker affinity 4 (at, T / 3.2 kPa O₂) drops from 40% to 24% saturation / 16% reduction
		 3 (CO₂ results in) dissociation of carbonic acid / increase of H⁺, leading to the release of oxygen √ 4 more oxygen released at same pO₂ / suitable data quote from graph √ 		Examiner's Comments Most candidates described the actively respiring cells' 'need' for oxygen and that it is released because the tissues require it. They also stated that actively respiring tissues have a low partial pressure of oxygen (as they use up oxygen), but failed to make the link to more CO ₂ being produced. A worrying number of candidates thought that resting tissues did not respire or

				need any oxygen at all, and some thought that respiring tissues themselves have a higher affinity for oxygen. The more able candidates described the effect of increased carbon dioxide in terms of H ⁺ from carbonic acid causing dissociation of oxygen from haemoglobin.
		Total	9	
5 6	i	 cluster / iron / molybdenum / sulfur , are, cofactors / prosthetic groups √ H₂ is a, competitive inhibitor / end product inhibitor √ CO is a <u>non-competitive</u> inhibitor √ (CO binds to allosteric site and) causes change in shape of active site √ energy required (from ATP) √ acidic conditions, are tolerated / increase reaction rate √ 	4 max	 DO NOT ACCEPT coenzyme 2. ACCEPT H₂, competes / AW, with N₂ for the active site OR 'increase in H₂ will reduce the activity of the enzyme' 3. ACCEPT CO acts as a cofactor (as candidates may be unfamiliar with CO) 5. ACCEPT ATP required as process is active Examiner's Comments It was pleasing to see that the majority of candidates were awarded two or three marks for this question accessing marking points 2, 3 and 4, for identifying H₂ as a competitive inhibitor and CO as a non-competitive inhibitor (and then going on to add how this affects the shape of the enzyme's active site). The other two marking points for this question were rarely mentioned, but sometimes the marks for these were missed when candidates did not expressly say that as ATP is needed, the process is active/energy requiring or for saying that acidic conditions are tolerated or increase reaction rate. In addition, some marks were lost for marking points 3 and 4 as students mistake CO for CO₂.
	ii	transport of oxygen, for respiration / to generate ATP (in <i>Rhizobium</i>)√ removes(excess) oxygen so less inhibition (of enzyme / reaction)√ removes CO to prevent inhibition (of nitrogenase) √	2	ACCEPT removes oxygen / creates anaerobic conditions, for nitrogen fixation IGNORE removes H ₂ so more N ₂ can bind (to active site) Examiner's Comments Few candidates obtained full marks on this

				 question. Those that did talked about the removal of oxygen and CO and therefore removal of inhibition of the enzyme. Some common errors/omissions on this question included: Candidates mentioned the removal/ binding of CO/oxygen by leghaemoglobin but did not then mention how this affects the enzyme. Candidates talked about how leghaemoglobin provides the Iron (from the haem group) for the enzyme's prosthetic group or protons/electrons for the reaction.
		Total	6	
57		carbon dioxide / CO_2 , forms , carbonic acid / H_2CO_3 OR carbonic acid / H_2CO_3 , dissociates into H ⁺ (and HCO ₃ ⁻) \checkmark haemocyanin , acts as a buffer / associates with (excess) H ⁺ \checkmark H ⁺ / low pH , causes change in (tertiary) structure of haemocyanin \checkmark	2 max (AO2.5)	ALLOW hydrogen ions / H ions throughout for H ⁺ IGNORE cannot bind to oxygen / reduced affinity for oxygen IGNORE Bohr effect If 2 MPs awarded give max 1 if haemoglobin instead of haemocyanin written ALLOW equation e.g. $CO_2 (+ H_2O) \rightarrow H_2CO_3$ OR e.g. $H_2CO_3 \rightarrow H^+ (+ HCO^{3-})$ DO NOT ALLOW hydrogen / H atoms / molecules Examiner's Comments There were some excellent responses that included information about carbonic acid formation and how this was linked to a change in the tertiary structure of haemocyanin. There were some good step by step descriptions of the production of hydrogen ions (H ⁺) and their subsequent binding to the protein. Many candidates thought that carbon dioxide would bind to the haemocyanin directly, displacing or blocking the oxygen which did not gain credit. It was also common to see the Bohr shift being described as the mechanism for reducing affinity for oxygen without further detail but this didn't score any marks

			Total	2	
5 8	а		<i>idea of</i> habitat is low(er) in oxygen √	1 (AO3.1)	
	b	i	low pO ₂ in the <u>placenta</u> \checkmark <i>idea of</i> O ₂ transferred from adult to fetal <u>haemoglobin</u> (in the placenta) \checkmark fetus receives (sufficient) oxygen for respiration \checkmark maintains O ₂ concentration gradient \checkmark	2 max (AO1.1)	ALLOW 'low oxygen concentration in <u>placenta</u> ' e.g. 'adult <u>haemoglobin</u> releases oxygen at low pO_2 , but fetal <u>haemoglobin</u> will pick up oxygen at the same pO_2 '.
		ii	initial straight line towards 80% and 10 mmHg (from the origin) √ curved line to 52 mmHg at 100% √	2 (AO2.2)	ALLOW straight line that stops short of 80% saturation as long as it passes through the 80% and 10 mmHg point if extrapolated or straight line that goes beyond this point
			Total	5	